Kostal Plenticore 10 Plus

Aus FHEMWiki

{{Infobox Hardware |Bild=|200px |Bildbeschreibung=Kostal Plenticore Plus mit BYD und KSEM |HWProtocol=IP |HWType=Hybrid Wechselrichter |HWCategory=Wechselrichter |HWVoltage=400 V |HWPoweredBy=3P AC |HWSize=39x67x45 cm (BxHxT) |HWComm=n/a |HWChannels=n/a |HWPowerConsumption=? |HWDeviceFHEM=[[HTTPMOD],[Modbus]] |HWManufacturer=Kostal GmbH }}

Achtung, diese Wiki Seite ist noch eine totale Baustelle :-) Momentan werden die Informationen noch aus den Threads im Forum hierher übertragen.


Der Kostal Plenticore 10 Plus [1] ist eine Hybrid Wechselrichter mit IP-Konnektivität.

Er verfügt über einen LAN-Anschluss und ist auf die Steuerung via WebGUI des Herstellers ausgelegt. Weiterhin kann eine Abfrage mit Modbus/TCP oder auch über eine undokumentierte API erfolgen. Für die API bietet der Hersteller keinerlei Support!

Voraussetzungen Energietechnik

Der Wechselrichter, der Speicher und der KSEM wurden durch einen Fachbetrieb installiert und konfiguriert. Die gesamte Anlage läuft fehlerfrei und wurde durch den Fachbetrieb abgenommen, sowie beim Netzbetreiber angemeldet.

Geräte-Registrierung

Hierfür ist die Dokumentation des Herstellers heranzuziehen. Für eine Verlängerung der Gewährleistungszeit kann man den Plenticore im Herstellerportal registrieren. Dies ist jedoch für die Anbindung an FHEM nicht notwendig.

Einbindung in das Netzwerk

Als Grundlage ist der Plenticore mit dem LAN zu verbinden, wodurch er eine TCP/IP Adresse per DHCP bekommt. Diese ist dann entweder am Display des Plenticore abzulesen, oder über die Oberfläche des Routers zu ermitteln.

Das gleiche gilt für den BYD Speicher, der jedoch zusätzlich auch über WLAN verfügt. Eine Netzwerkanbindung des Speichers ist beim Plenticore nicht zwingend notwendig, da der Plenticore mit dem Speicher über eine RS-485 Schnittstelle kommuniziert. Bei dieser Anbindung werden jedoch noch nicht alle möglichen Werte aus dem Speicher ausgelesen. Später wird hierzu jedoch noch mehr geschrieben, um alle Möglichkeiten offen zu halten.

Der KSEM kann ebenfalls auch direkt per LAN ausgelesen werden, was jedoch ebenfalls nicht zwingend notwendig ist. Eine Kommunikation des KSEM mit dem Plenticore erfolgt über zwei mögliche Wege. Beim Betrieb mit Speicher ist zwingend die RS485 Schnittstelle erforderlich, über die auch deer Plenticore alle Werte übermittelt bekommt. Auch diese sind dann am Plenticore abfragbar. Der zweite Weg wäre dann über die LAN Verbindung, bei der jedoch kein Speicher am Plenticore konfigurierbar ist.

Voraussetzungen FHEM Umfeld

1. Alle Geräte müssen mit TCP/IP erreichbar sein

2. Alle Module sollten auf einem aktuellen stand sein

3. Python

3.1 Ein Python 3 sollte vorhanden sein, wenn man die erweiterten Funktionalitäten, wie Statistiken, Speicher auslesen und später auch das Setzen von Werten im Plenticore, verwenden möchte.

3.2 Es müssen folgende Python Module vorhanden sein

pip3 install pycryptodome
pip3 install -U fhem

4. Eine LogDB/LogDBRep sollte bereits vorhanden sein, was hier nicht weiter erklärt wird.

Einbindung in FHEM: Überblick

1. Hardware Anbindung (alles über LAN)

1.1 Kostal Plenticore Plus

1.1.1 Kostal Plenticore Plus die Basis information (Modbus/TCP)

       - RAW Definition des Device
       - userreadings

1.1.2 Kostal Plenticore Plus die Statistiken (über Python Skript)

       - RAW Definition des Device
       - userreadings

1.2 Kostel Smart Energy Manager (KSEM) (Modbus/TCP)

       - RAW Definition des Device
       - userreadings

1.3 BYD Speicher (über Python Skript)

2. PV Eigenverbrauch-Steuerung

       - RAW Definition
          LWP_LuftWärmePumpe
          LWP_PV
          LWP_Signale
          LWP_Counter
          rg_LWP_Status
       - RAW Definition
          Pool_Softube
          Pool_PV
          Pool_Signale
          Pool_Counter
          rg_Pool_Status
       - RAW Definition
          Waschmaschine
          Waschmaschine_PV
          Waschmaschine_Signale
          Waschmaschine_Counter
          rg_Waschmaschine_Status

3. Energie Bilanz

       - RAW Definition
          Energiebilanz
          LogDBRep_PV_total_diff_Week
          LogDBRep_PV_total_max_Month
          LogDBRep_PV_used_diff_Week
          LogDBRep_PV_used_max_Month

4. Wetter Prognose


5. Diagramme

       - RAW Definition
          Leistungsuebersicht    - SVG_LogDB_Photovoltaik_1
          Hauptverbraucher       - SVG_LogDB_Photovoltaik_2
          Leistungsbezug         - SVG_LogDB_Photovoltaik_3
          PV_Bilanz              - SVG_LogDB_PV_Bilanz
          Forecast / Calculation - SVG_LogDB_Photovoltaik_4

Statistiken

Der Plenticore erstellt intern noch diverse Statistiken, die auch über das WebGUI angesehen werden können. Diese werden jedoch nicht über MODBUS/TCP ausgegeben, jedoch auch zum Kostal Portal übermittelt, wo man dann bereits in Form von Diagrammen einen schönen Überblick bekommt. Das Ziel ist jedoch die Statistiken lokal im FHEM abzulegen.

1.1 Kostal Plenticore Plus

1.1.1 Einbindung in FHEM: Kostal Plenticore Plus die Basis information (Modbus/TCP)

Der Kostal Plenticore wird mittels des Moduls MODBUS eingebunden. Dazu gilt zunächst die folgende Konfiguration als Basis, die am Display des Plenticore oder auch in der Kostal Dokumentation zu entnehmen ist.

GeräteId  : 71

IP-Adresse: <IP-Adresse>

Port  : 1502

Das Gerät aktualisiert sich im Abstand von 60 Sekunden durch den stetigen Modbus/TCP Datenstrom. Der Plenticore ist als Modbus Master implementiert und sendet somit alle Daten permanent ins Netzwerk.

Die Zeit kann auch verändert werden, jedoch sollte sie nicht zu kurz gewählt sein.

- RAW Definition des Wechselrichters

Userreadings

Um später einige Abfragen und Diagramme einfacher zu erstellen wurden einige userreadings erstellt, die bereits bei der RAW Definition mit vorhanden sind. Während der Integration in FHEM und der Konfiguration kann es hierdurch jedoch noch Fehlermeldungen im FHEM Log geben, da noch nicht alle Werte vorhanden sind. Dies betrifft insbesondere die Statistics_* readings, die durch ein Python Skript später erzeugt werden.

Power_DC_Sum

  Trigger: Total_DC_Power.*
  Dies berechnet direkt die Summe der DC-Leistung. Wenn der Plenticore einen Speicher hat, wird dieser am String 3 angeschlossen,
  sollte also kein Speicher vorhanden sein muss man hier den dritten String auch noch addieren.

Total_PV_Power_reserve

  Trigger: Total_DC_Power.*
  Hier wird ein reading erstellt, dass als Information über die verwendbare Reserve dient. Die Leistung, die in den Speicher geht
  sollte man nämlich besser sofort verbrauchen, anstatt es erst zu speicher. Die 0.90 ist ein circa Wirkungsgrad, um von DC- auf AC-Leistung zu kommen.
  Der Total_PV_Power_reserve Wert kann gerne nach eigenen Belangen kalkuliert werden.

Total_DC_Power_Max

  Trigger: Total_DC_Power.*
  Um die Batterieleistung mit zu berücksichtigen wird dieser Momentan Wert ermittelt.

Actual_battery_charge_-minus_or_discharge_-plus_Power

  Trigger: Actual_battery_charge_-minus_or_discharge_-plus_current.*
  Berechnung der Batterie Leistung aus Spannung und Strom , der wert kann positiv oder negativ sein, je nach dem ob geladen oder entladen wird.

Actual_battery_charge_usable_Power

  Trigger: Act_state_of_charge.*
  Dieser Wert gibt an, wieviel Leistung im Speicher vorhanden ist, reduziert um 10% Verluste. An dieser Stelle muss die Nennleistung des Speichers
  eingetragen werden, da diese noch nicht ausgelesen werden kann. Obwohl es im "Battery_Type 892941625" stecken könnte. 8929 >> 8.93 KW ???

Solar_SolarRadiation

  Trigger: Total_DC_Power.*
  Wer noch keine Wetter prognose verwendet kann dieses reading entfernen. Das wird später noch behandelt.

statistics_clean

  Trigger: statistics_output.*
  Dies ist ein temporäres reading, das nur als zwischen Schritt für die Erstellung der Statistics_* readings verwendet wird. Befüllt wird zuerst
  das reading statistics_output durch ein regelmäßig laufendes Python Skript. Auch dies wird noch später behandelt.
  Wer keine Statistiken haben möchte kann das einfach entfernen.

1.1.2 Einbindung in FHEM: Kostal Plenticore Plus die Statistiken (über Python Skript)

Die Statistiken des Plenticore sind noch eine Zusatzinformation, die nicht über Modbus/TCP übermittelt wird. Diese lassen sich nur über die API des Plenticore abfragen.

http://<IP-Address_Plenticore/api/v1

Dateiverzeichnis:

/opt/fhem
/opt/fhem/python/pwd_fhem.json
/opt/fhem/python/pwd_plenticore.json
/opt/fhem/python/bin
/opt/fhem/python/bin/plenticore_statistic.py

Python:

fhem@raspberrypi:~/python/bin$ which python3
/usr/bin/python3
fhem@raspberrypi:~/python/bin$ python3 --version
Python 3.7.3

fhem@raspberrypi:~/python/bin$ cat plenticore_statistic.py

import random
import string
import base64
import json
import requests
import hashlib
import os
import hmac
from Crypto.Cipher import AES
import binascii

import fhem
import asyncio

import sys
plenticore = sys.argv[1]
web        = sys.argv[2]
request    = '/processdata/scb:statistic:EnergyFlow' 

try:
    with open('/opt/fhem/python/pwd_plenticore.json', 'r') as f:
        credentials=json.load(f)
except Exception as e:
    print('Something went wrong: {}'.format(e))

USER_TYPE = credentials["username"]
PASSWD = credentials["password"]
BASE_URL = "http://" + plenticore + "/api/v1"
AUTH_START = "/auth/start"
AUTH_FINISH = "/auth/finish"
AUTH_CREATE_SESSION = "/auth/create_session"
ME = "/auth/me"

def randomString(stringLength):
    letters = string.ascii_letters
    return ''.join(random.choice(letters) for i in range(stringLength))''

u = randomString(12)
u = base64.b64encode(u.encode('utf-8')).decode('utf-8')

step1 = {
  "username": USER_TYPE,
  "nonce": u
}
step1 = json.dumps(step1)

url = BASE_URL + AUTH_START
headers = {'Content-type': 'application/json', 'Accept': 'application/json'}
response = requests.post(url, data=step1, headers=headers)
response = json.loads(response.text)
i = response['nonce']
e = response['transactionId']
o = response['rounds']
a = response['salt']
bitSalt = base64.b64decode(a)

def getPBKDF2Hash(password, bytedSalt, rounds):
    return hashlib.pbkdf2_hmac('sha256', password.encode('utf-8'), bytedSalt, rounds)

r = getPBKDF2Hash(PASSWD,bitSalt,o)
s = hmac.new(r, "Client Key".encode('utf-8'), hashlib.sha256).digest()
c = hmac.new(r, "Server Key".encode('utf-8'), hashlib.sha256).digest()
_ = hashlib.sha256(s).digest()
d = "n=user,r="+u+",r="+i+",s="+a+",i="+str(o)+",c=biws,r="+i
g = hmac.new(_, d.encode('utf-8'), hashlib.sha256).digest()
p = hmac.new(c, d.encode('utf-8'), hashlib.sha256).digest()
f = bytes(a ^ b for (a, b) in zip(s, g))
proof = base64.b64encode(f).decode('utf-8')

step2 = {
  "transactionId": e,
  "proof": proof
}
step2 = json.dumps(step2)

url = BASE_URL + AUTH_FINISH
headers = {'Content-type': 'application/json', 'Accept': 'application/json'}
response = requests.post(url, data=step2, headers=headers)
response = json.loads(response.text)
token = response['token']
signature = response['signature']

y = hmac.new(_, "Session Key".encode('utf-8'), hashlib.sha256)
y.update(d.encode('utf-8'))
y.update(s)
P = y.digest()
protocol_key = P
t = os.urandom(16)

e2 = AES.new(protocol_key,AES.MODE_GCM,t)
e2, authtag = e2.encrypt_and_digest(token.encode('utf-8'))

step3 = {
  "transactionId": e,
  "iv": base64.b64encode(t).decode('utf-8'),
  "tag": base64.b64encode(authtag).decode("utf-8"),
  "payload": base64.b64encode(e2).decode('utf-8')
}
step3 = json.dumps(step3)

headers = { 'Content-type': 'application/json', 'Accept': 'application/json' }
url = BASE_URL + AUTH_CREATE_SESSION
response = requests.post(url, data=step3, headers=headers)
response = json.loads(response.text)
sessionId = response['sessionId']

#create a new header with the new Session-ID for all further requests
headers = { 'Content-type': 'application/json', 'Accept': 'application/json', 'authorization': "Session " + sessionId }
url = BASE_URL + ME
response = requests.get(url = url, headers = headers)
response = json.loads(response.text)
authOK = response['authenticated']
if not authOK:
    print("authorization NOT OK")
    sys.exit()

url = BASE_URL + "/info/version"
response = requests.get(url = url, headers = headers)
response = json.loads(response.text)
swversion = response['sw_version']
apiversion = response['api_version']
hostname = response['hostname']
name = response['name']
print("Connected to the inverter " + name + "/" + hostname + " with SW-Version " + swversion + " and API-Version " + apiversion)

# Auth OK, now send your desired requests

url = BASE_URL + request

response = requests.get(url = url, headers = headers)
response = json.loads(response.text)

message  = json.dumps(response)

#print(json.dumps(response, indent=4, sort_keys=True))
#print(message)


async def run():

    try:
        with open('/opt/fhem/python/pwd_fhem.json', 'r') as f:
            credentials=json.load(f)
    except Exception as e:
        print('Something went wrong: {}'.format(e))

    fh = fhem.Fhem(web, protocol="http", port=8083, username=credentials["username"], password=credentials["password"])

    fh.send_cmd("setreading PV_Anlage_1 statistics_output " + message)

asyncio.get_event_loop().run_until_complete(run())

'''Userreadings'''
Die userreadings gehören zum Gerät PV_Anlage_1 .

statistics_clean
   Trigger: statistics_output.*
   Dies ist ein temporäres reading, das nur als zwischen Schritt für die Erstellung der Statistics_* readings verwendet wird. Befüllt wird zuerst
   das reading statistics_output durch ein regelmäßig laufendes Python Skript. Auch dies wird noch später behandelt.
statistics_output
   Trigger: externes Python Skript
   Das userreading wird über ein Python Skript mit Daten gefüllt und dient als Trigger für statistics_clean

'''Passworte'''
Die Passworte für den Plenticore und den FHEM Zugang liegen in einzelnen JSON Dateien

fhem@raspberrypi:~/python$ cat pwd_plenticore.json
<pre>
{
    "username": "user",
    "password": "<Steht auf dem Gehäuse>"
}

fhem@raspberrypi:~/python$ cat pwd_fhem.json

{
    "username": "<Ein Fhem Telnet User>",
    "password": "<Das Passwort des Users>"
}

1.2 Einbindung in FHEM: KSEM mit MODBUS/TCP

Diese Einbindung ist nicht zwingend notwendig, jedoch weil es möglich ist hier beschrieben.

Das Gerät ist hier mit "disable 1" konfiguriert, um es zu verwenden muss das Attribut auf 0 gesetzt oder einfach gelöscht werden.

Auch hier ist ein intervall von 60 Sekunden gesetzt worden. Das Logging ist noch komplett deaktiviert, weshalb man seine Werte noch selber definieren muss.

- RAW Definition des KSEM

defmod PV_KSEM ModbusAttr 1 60 192.168.178.17:502 TCP
attr PV_KSEM DbLogExclude .*
attr PV_KSEM alias PV_Energy_Manager
attr PV_KSEM comment Der KSEM ermittelt nicht alle Werte, welche in der SunSpec spezifiziert sind.\
Alle nicht unterstützen Werte sind mit 0x8000 gekennzeichnet.\
Für die nicht unterstützten Zählerstände wird die 0x800000000 ausgegeben.\
\
Der Summenstrom M_AC_Current (sum of active phases) kann aber durch den Endanwender selber\
berechnet werden aus der Summe der Einzelwerte (Phase A AC current, Phase B AC current Phase C AC current)\
\
Die einzelnen Spannungen zwischen den Phasen können nicht gemessen werden und werden deshalb nicht ausgegeben.
attr PV_KSEM dev-h-defPoll 1
attr PV_KSEM dev-type-INT16-len 1
attr PV_KSEM dev-type-INT16-unpack s>
attr PV_KSEM dev-type-INT16_Current-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_Current_SF",0))
attr PV_KSEM dev-type-INT16_Current-format %.2f
attr PV_KSEM dev-type-INT16_Current-len 1
attr PV_KSEM dev-type-INT16_Current-unpack s>
attr PV_KSEM dev-type-INT16_Freq-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_Freq_SF",0))
attr PV_KSEM dev-type-INT16_Freq-format %.2f
attr PV_KSEM dev-type-INT16_Freq-len 1
attr PV_KSEM dev-type-INT16_Freq-unpack s>
attr PV_KSEM dev-type-INT16_PF-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_PF_SF",0))
attr PV_KSEM dev-type-INT16_PF-format %.2f
attr PV_KSEM dev-type-INT16_PF-len 1
attr PV_KSEM dev-type-INT16_PF-unpack s>
attr PV_KSEM dev-type-INT16_Power-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_Power_SF",0))
attr PV_KSEM dev-type-INT16_Power-format %.2f
attr PV_KSEM dev-type-INT16_Power-len 1
attr PV_KSEM dev-type-INT16_Power-unpack s>
attr PV_KSEM dev-type-INT16_VA-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_VA_SF",0))
attr PV_KSEM dev-type-INT16_VA-format %.2f
attr PV_KSEM dev-type-INT16_VA-len 1
attr PV_KSEM dev-type-INT16_VA-unpack s>
attr PV_KSEM dev-type-INT16_VAR-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_VAR_SF",0))
attr PV_KSEM dev-type-INT16_VAR-format %.2f
attr PV_KSEM dev-type-INT16_VAR-len 1
attr PV_KSEM dev-type-INT16_VAR-unpack s>
attr PV_KSEM dev-type-INT16_Voltage-expr $val * (10 ** ReadingsNum("$name" ,"M_AC_Voltage_SF",0))
attr PV_KSEM dev-type-INT16_Voltage-format %.2f
attr PV_KSEM dev-type-INT16_Voltage-len 1
attr PV_KSEM dev-type-INT16_Voltage-unpack s>
attr PV_KSEM dev-type-STR32-expr $val =~ s/[\00]+//gr
attr PV_KSEM dev-type-STR32-format %s
attr PV_KSEM dev-type-STR32-len 16
attr PV_KSEM dev-type-STR32-unpack a*
attr PV_KSEM dev-type-UINT16-format %s
attr PV_KSEM dev-type-UINT16-len 1
attr PV_KSEM dev-type-UINT32-format %s
attr PV_KSEM dev-type-UINT32-len 2
attr PV_KSEM dev-type-UINT64-expr $val/10000
attr PV_KSEM dev-type-UINT64-format %s
attr PV_KSEM dev-type-UINT64-len 4
attr PV_KSEM dev-type-UINT64-unpack Q>
attr PV_KSEM disable 1
attr PV_KSEM group PV Eigenverbrauch
attr PV_KSEM icon measure_power
attr PV_KSEM obj-h40072-reading M_AC_Current_A
attr PV_KSEM obj-h40072-type INT16_Current
attr PV_KSEM obj-h40073-reading M_AC_Current_B
attr PV_KSEM obj-h40073-type INT16_Current
attr PV_KSEM obj-h40074-reading M_AC_Current_C
attr PV_KSEM obj-h40074-type INT16_Current
attr PV_KSEM obj-h40075-reading M_AC_Current_SF
attr PV_KSEM obj-h40075-type INT16
attr PV_KSEM obj-h40077-reading M_AC_Voltage_AN
attr PV_KSEM obj-h40077-type INT16_Voltage
attr PV_KSEM obj-h40078-reading M_AC_Voltage_BN
attr PV_KSEM obj-h40078-type INT16_Voltage
attr PV_KSEM obj-h40079-reading M_AC_Voltage_CN
attr PV_KSEM obj-h40079-type INT16_Voltage
attr PV_KSEM obj-h40084-reading M_AC_Voltage_SF
attr PV_KSEM obj-h40084-type INT16
attr PV_KSEM obj-h40085-reading M_AC_Freq
attr PV_KSEM obj-h40085-type INT16_Freq
attr PV_KSEM obj-h40086-reading M_AC_Freq_SF
attr PV_KSEM obj-h40086-type INT16
attr PV_KSEM obj-h40087-reading M_AC_Power
attr PV_KSEM obj-h40087-type INT16_Power
attr PV_KSEM obj-h40088-reading M_AC_Power_A
attr PV_KSEM obj-h40088-type INT16_Power
attr PV_KSEM obj-h40089-reading M_AC_Power_B
attr PV_KSEM obj-h40089-type INT16_Power
attr PV_KSEM obj-h40090-reading M_AC_Power_C
attr PV_KSEM obj-h40090-type INT16_Power
attr PV_KSEM obj-h40091-reading M_AC_Power_SF
attr PV_KSEM obj-h40091-type INT16
attr PV_KSEM obj-h40092-reading M_AC_VA
attr PV_KSEM obj-h40092-type INT16_VA
attr PV_KSEM obj-h40093-reading M_AC_VA_A
attr PV_KSEM obj-h40093-type INT16_VA
attr PV_KSEM obj-h40094-reading M_AC_VA_B
attr PV_KSEM obj-h40094-type INT16_VA
attr PV_KSEM obj-h40095-reading M_AC_VA_C
attr PV_KSEM obj-h40095-type INT16_VA
attr PV_KSEM obj-h40096-reading M_AC_VA_SF
attr PV_KSEM obj-h40096-type INT16
attr PV_KSEM obj-h40097-reading M_AC_VAR
attr PV_KSEM obj-h40097-type INT16_VAR
attr PV_KSEM obj-h40098-reading M_AC_VAR_A
attr PV_KSEM obj-h40098-type INT16_VAR
attr PV_KSEM obj-h40099-reading M_AC_VAR_B
attr PV_KSEM obj-h40099-type INT16_VAR
attr PV_KSEM obj-h40100-reading M_AC_VAR_C
attr PV_KSEM obj-h40100-type INT16_VAR
attr PV_KSEM obj-h40101-reading M_AC_VAR_SF
attr PV_KSEM obj-h40101-type INT16
attr PV_KSEM obj-h40102-reading M_AC_PF
attr PV_KSEM obj-h40102-type INT16_PF
attr PV_KSEM obj-h40103-reading M_AC_PF_A
attr PV_KSEM obj-h40103-type INT16_PF
attr PV_KSEM obj-h40104-reading M_AC_PF_B
attr PV_KSEM obj-h40104-type INT16_PF
attr PV_KSEM obj-h40105-reading M_AC_PF_C
attr PV_KSEM obj-h40105-type INT16_PF
attr PV_KSEM obj-h40106-reading M_AC_PF_SF
attr PV_KSEM obj-h40106-type INT16
attr PV_KSEM obj-h40108-reading M_Exported
attr PV_KSEM obj-h40108-type UINT32
attr PV_KSEM obj-h40110-reading M_Exported_A
attr PV_KSEM obj-h40110-type UINT32
attr PV_KSEM obj-h40112-reading M_Exported_B
attr PV_KSEM obj-h40112-type UINT32
attr PV_KSEM obj-h40114-reading M_Exported_C
attr PV_KSEM obj-h40114-type UINT32
attr PV_KSEM obj-h40116-reading M_Imported
attr PV_KSEM obj-h40116-type UINT32
attr PV_KSEM obj-h40118-reading M_Imported_A
attr PV_KSEM obj-h40118-type UINT32
attr PV_KSEM obj-h40120-reading M_Imported_B
attr PV_KSEM obj-h40120-type UINT32
attr PV_KSEM obj-h40122-reading M_Imported_C
attr PV_KSEM obj-h40122-type UINT32
attr PV_KSEM obj-h40125-reading M_Exported_VA
attr PV_KSEM obj-h40125-type UINT32
attr PV_KSEM obj-h40127-reading M_Exported_VA_A
attr PV_KSEM obj-h40127-type UINT32
attr PV_KSEM obj-h40129-reading M_Exported_VA_B
attr PV_KSEM obj-h40129-type UINT32
attr PV_KSEM obj-h40131-reading M_Exported_VA_C
attr PV_KSEM obj-h40131-type UINT32
attr PV_KSEM obj-h40133-reading M_Imported_VA
attr PV_KSEM obj-h40133-type UINT32
attr PV_KSEM obj-h40135-reading M_Imported_VA_A
attr PV_KSEM obj-h40135-type UINT32
attr PV_KSEM obj-h40137-reading M_Imported_VA_B
attr PV_KSEM obj-h40137-type UINT32
attr PV_KSEM obj-h40139-reading M_Imported_VA_C
attr PV_KSEM obj-h40139-type UINT32
attr PV_KSEM obj-h512-reading Active_energy+
attr PV_KSEM obj-h512-type UINT64
attr PV_KSEM obj-h516-reading Active_energy-
attr PV_KSEM obj-h516-type UINT64
attr PV_KSEM obj-h8192-reading ManufacturerID
attr PV_KSEM obj-h8192-type UINT16
attr PV_KSEM obj-h8193-reading ProductID
attr PV_KSEM obj-h8193-type UINT16
attr PV_KSEM obj-h8194-reading ProductVersion
attr PV_KSEM obj-h8194-type UINT16
attr PV_KSEM obj-h8195-reading FirmwareVersion
attr PV_KSEM obj-h8195-type UINT16
attr PV_KSEM obj-h8196-reading VendorName
attr PV_KSEM obj-h8196-type STR32
attr PV_KSEM obj-h8212-reading Productname
attr PV_KSEM obj-h8212-type STR32
attr PV_KSEM obj-h8228-reading SerialNumber
attr PV_KSEM obj-h8228-type STR32
attr PV_KSEM obj-h8244-reading MeasuringInterval
attr PV_KSEM obj-h8244-type UINT16
attr PV_KSEM room Strom->Photovoltaik
attr PV_KSEM sortby 03
attr PV_KSEM userReadings M_AC_Current:M_AC_Current_.* { ReadingsVal($NAME,"M_AC_Current_A",0) + ReadingsVal($NAME,"M_AC_Current_B",0) + ReadingsVal($NAME,"M_AC_Current_C",0) }
attr PV_KSEM verbose 0

1.3 Einbindung in FHEM: BYD Speicher (über Python Skript)

Diese Einbindung ist nicht zwingend notwendig, jedoch weil es möglich ist hier beschrieben.


2. PV Eigenverbrauch-Steuerung

Beispiel Luft Wärme Pumpe

- RAW Definition LWP_LuftWärmePumpe


- RAW Definition LWP_PV


- RAW Definition LWP_Signale


- RAW Definition LWP_Counter


- RAW Definition rg_LWP_Status


Beispiel Pool

- RAW Definition Pool_Softube


- RAW Definition Pool_PV


- RAW Definition Pool_Signale


- RAW Definition Pool_Counter


- RAW Definition rg_Pool_Status


Beispiel Waschmaschine (mit Walzenschalter ;-) )

- RAW Definition Waschmaschine


- RAW Definition Waschmaschine_PV


- RAW Definition Waschmaschine_Signale


- RAW Definition Waschmaschine_Counter


- RAW Definition rg_Waschmaschine_Status



3. Energie Bilanz

- RAW Definition Energiebilanz


Erstellen von zusätzlichen Werten in der Datenbank

Hier werden Werte konsolidiert, weil z.B. der Wert PV_total_Month stetig steigt. Am Ende des Monats sind die gesamten Zwischenwerte ohne Aussagekraft.

- RAW Definition LogDBRep_PV_total_diff_Week


- RAW Definition LogDBRep_PV_total_max_Month


- RAW Definition LogDBRep_PV_used_diff_Week


- RAW Definition LogDBRep_PV_used_max_Month


Löschen von nicht mehr benötigten Werten in der Datenbank

Hier wird endgültig aufgeräumt, alte momentan Werte werden gelöscht, wenn sie nach z.B. drei Monaten keine Relevanz mehr haben. Dafür wurden im vorherigen Abschnitt zusätzliche Werte in der Datenbank erzeugt, die in Diagrammen trotzdem noch einen trend erkennen lassen. Wen eine immer größer werdende Datenbank mit steigenden Antwortzeiten nicht stört, der kann das Aufräumen auch weg lassen. Bei einer späteren Migration führt dies natürlich zu höherem Aufwand und hohen Laufzeiten.


4. Wetter Prognose

5. Diagramme

- RAW Definition Leistungsuebersicht - SVG_LogDB_Photovoltaik_1


- RAW Definition Hauptverbraucher - SVG_LogDB_Photovoltaik_2


- RAW Definition Leistungsbezug - SVG_LogDB_Photovoltaik_3


- RAW Definition PV_Bilanz - SVG_LogDB_PV_Bilanz


- RAW Definition Forecast / Calculation - SVG_LogDB_Photovoltaik_4



Problemlösung

Projekte der FHEM-Community

  • Beitrag - Photovoltaik mit Eigenverbrauch Steuerung (Kostal plenticore; EM410)
  • Beitrag - Kostal Plenticore Bilanz
  • Beitrag - Kostal Plenticore, EM410 (KSEM), BYD, Solarprognose, Forecast
  • Thema - Modul 93_DbRep - Reporting und Management von Datenbankinhalten (DbLog)
  • Thema - Neue Version von HTTPMOD mit neuen Features zum Testen

Links